Organic catalysis

Organic catalysis Master Degree

Feel Free to Ask Questions!

Tel : +8615850513534

E-mail : apply@acasc.cn

  • Application Deadline:2018/06/12
  • Tuition:¥0.00
  • Application Fee:¥800.00
  • Service Fee:¥0.00
How To Apply

Applying through ACASC generally takes a few minutes to complete. It takes 5 steps to complete the application.

1. Click “Apply Now” button at the top of the page.

2. Fill in online application form.

3. Upload required documents.

4. Pay the application fee and the ACASC service fee

5. Click “Submit” button.

Important notice: In order to apply, you need to create an account with ACASC.

In organic chemistry, the term organocatalysis (a portmanteau of the terms "organic" and "catalyst") refers to a form of catalysis, whereby the rate of a chemical reaction is increased by an organic catalyst referred to as an "organocatalyst" consisting of carbon, hydrogen, sulfur and other nonmetal elements found in organic compounds. Because of their similarity in composition and description, they are often mistaken as a misnomer for enzymes due to their comparable effects on reaction rates and forms of catalysis involved.


Organocatalysts which display secondary amine functionality can be described as performing either enamine catalysis (by forming catalytic quantities of an active enamine nucleophile) or iminium catalysis (by forming catalytic quantities of an activated iminium electrophile). This mechanism is typical for covalent organocatalysis. Covalent binding of substrate normally requires high catalyst loading (for proline-catalysis typically 20-30 mol%). Noncovalent interactions such as hydrogen-bonding facilitates low catalyst loadings.


Organocatalysis offers several advantages. There is no need for metal-based catalysis thus making a contribution to green chemistry. In this context, simple organic acids have been used as catalyst for the modification of cellulose in water on multi-ton scale. When the organocatalyst is chiral an avenue is opened to asymmetric catalysis, for example the use of proline in aldol reactions is an example of chirality and green chemistry.


share_phone_icon share_facebook_icon share_twitter_icon google_share_plus_icon share_youtube_icon share_pinterest_icon share_linkedin_icon share_instagram_icon email_icon top_icon