Atomicand Molecular Physics

Atomicand Molecular Physics Master Degree

Feel Free to Ask Questions!

Tel : +8615850513534

E-mail : apply@acasc.cn

  • Application Deadline:2018/09/15
  • Tuition:¥22000.00
  • Application Fee:¥800.00
  • Service Fee:¥0.00
How To Apply

Applying through ACASC generally takes a few minutes to complete. It takes 5 steps to complete the application.

1. Click “Apply Now” button at the top of the page.

2. Fill in online application form.

3. Upload required documents.

4. Pay the application fee and the ACASC service fee

5. Click “Submit” button.

Important notice: In order to apply, you need to create an account with ACASC.

Atomic physics is the subfield of AMO that studies atoms as an isolated system of electrons and an atomic nucleus, while molecular physics is the study of the physical properties of molecules. The term atomic physics is often associated with nuclear power and nuclear bombs, due to the synonymous use of atomic and nuclear in standard English. However, physicists distinguish between atomic physics — which deals with the atom as a system consisting of a nucleus and electrons — and nuclear physics, which considers atomic nuclei alone. The important experimental techniques are the various types of spectroscopy. Molecular physics, while closely related to atomic physics, also overlaps greatly with theoretical chemistry, physical chemistry and chemical physics.

Both subfields are primarily concerned with electronic structure and the dynamical processes by which these arrangements change. Generally, this work involves using quantum mechanics. For molecular physics this approach is known as quantum chemistry. One important aspect of molecular physics is that the essential atomic orbital theory in the field of atomic physics expands to the molecular orbital theory. Molecular physics is concerned with atomic processes in molecules, but it is additionally concerned with effects due to the molecular structure. Additionally to the electronic excitation states which are known from atoms, molecules are able to rotate and to vibrate. These rotations and vibrations are quantized; there are discrete energy levels. The smallest energy differences exist between different rotational states, therefore pure rotational spectra are in the far infrared region (about 30 - 150 µm wavelength) of the electromagnetic spectrum. Vibrational spectra are in the near infrared (about 1 - 5 µm) and spectra resulting from electronic transitions are mostly in the visible and ultraviolet regions. From measuring rotational and vibrational spectra properties of molecules like the distance between the nuclei can be calculated.

As with many scientific fields, strict delineation can be highly contrived and atomic physics is often considered in the wider context of atomic, molecular, and optical physics. Physics research groups are usually so classified.


share_phone_icon share_facebook_icon share_twitter_icon share_youtube_icon share_pinterest_icon share_linkedin_icon share_instagram_icon email_icon top_icon